Full Page

ORDINAL REAL  NUMBERS .00

 

    Alternative algebraic definitions of the Hessenberg 

          natural operations   in the ordinal numbers .

           

By Dr. Constantine E. Kyritsis

Department of Mathematics and Computer Science

University of Portsmouth

Software Laboratory

Electrical and Computer Engineering

National Technical University of Athens

http://www.softlab.ntua.gr/~kyritsis

kyritsis@softlab.ntua.gr

 

 

§0.  Introduction  This is a series of five papers that have as goal the  definition of topological complete linearly ordered fields (continuous numbers)  that include the real numbers and are obtained from the ordinal numbers in a method analogous to the way that  Cauchy derived the real numbers from the natural numbers.We may call them linearly ordered Newton-Leibniz numbers. The author started and completed this  research in the island of Samos during 1990-1992 . Seven years later (1999) he discovered how such numbers can be interpreted as fields of random variables (stochastic real numbers) that links them to applications of Bayesian  statistics, stochastic processes and computer procedures. From this point of view it turns out that the ontology of infinite is the phenomenology of changes of the finite. In particular the phenomenology of stochastic changes of the finite can be formulated as ontology of the infinite .He hopes that in future papers he shall be able to present this perspective in detail.

 

 

 It is a wonderful perspective to try to define the Dirac’s deltas as natural entities of  such stochastic real numbers. If in the completion  of rational numbers to real numbers we ramify the equivalence relation of convergent sequences to others that include  not only where the sequences  converge (if they converge at the same point) but also how fast (if they converge in the same way ,an attribute related also to computer algorithms complexity)  ,then we get non-linearly ordered topological fields that contain ordinal numbers (certainly up to ùa , a=   ùù) and are closer to practical applications. This approach does not involve the random variables at all, but involves directly  sequences of rational numbers as "Newtonian fluxions". This creation can be considered as a model of such linearly ordered fields (up-to-characteristic  ùa , a=   ùù) ,when these linearly ordered fields are defined axiomatically. This gives also a construction of the real numbers with a set which is countable. This does not contradict  that all models of the real numbers are isomorphic as the field- isomorphism is not in this case also an Î-isomorphism so the Cauchy-real numbers and such a model still have different cardinality. If we want to define in this way all the Ordinal real numbers , then it is still possible but then this would give also a device for a model of all the ZFC-set theory! And such a model is indeed possible: By taking again sequences of non-decreasing (in the inclusion) finite sets of ZFC , and requiring that  any property ,relation or operation if it is to hold for this set-sequence it must hold finally for each term of the sequence and finite set. In other words we take a minimality relative to the axiom of infinite for every set of it. It is easy to prove that the (absolute) cardinality of such a model is at most 2ù  , that is at most the cardinality of the continuum. We could conceive  such a model as the  way a computer with its algorithms , data bases tables etc would represents sets of ZFC in a logically consistent way. There is no contradiction with the 2nd-incompletness theorem of Gödel as the argument to prove that it is a model of ZFC-set theory is already outside ZFC-set theory (as are also the arguments of Gödel ,or of Lowenheim-Skolem  that gives a countable model of ZFC-set theory).

 

In this paper are studied the Hessenberg operations  in the ordinal numbers,  from  an  algebraic point of view.

    The main results are the characterisation theorems 9,10 . They are characterisations  of the Hessenberg  operations as 

     a) field-inherited operations in the ordinal numbers,that satisfy two inductive properties .(see proposition 10)

     b) operations that satisfy a number of purely algebraic properties, that could be called in short operations of a well-orderd commutative semiring with unit ;(see Lemma 0, proposition 9).

     In  a  next  paper  I   shall   give   two   more   algebraic characterisations of the Hessenberg operations as

     c) operations defined by transfinite induction in the ordinal numbers and by  two recursive rules ,

   d) operations of the free semirings in the category of abelian semirings; or   as   the   operations   of   the   formal polynomial  algebras  of the category of abelian semirings. These  characterisations  of the Hessenberg operations are independed   of   the standard non-commutative  operations of  the ordinal  numbers and can be considered as alternative and simpler  definitions  of them (especially the c),d)).

 In particular  it  is  proved  that  the  Hessenberg  natural operations are free finitary operations ; We make  use of rudimentary techniques  relevant to  K-theory and Universal Algebra .

    The main application of the present results is in the definition of the ordinal  real  numbers.(see  [ Kyritsis C.E.1991]  .By making use of the present results and techniques  it is  proved in [Kyritsis C.E.1991] that all the three techniques  and Hierarchies of transfinite real numbers ,see [ Glayzal A 1937],of surreal numbers, see [ Conway J.H. 1976], of ordinal real numbers see  [ Kyritsis C.E.1991], give by inductive limit  or union, the same class of numbers ,already known as the class No. We refer to the class No as "the totally ordered Newton-Leibniz realm of numbers").

       1. Two algebraic characterisations of the Hessenberg operations   in the ordinal numbers.

     Let us denote by F a linearly ordered field of characteristic ù (also said of characteristic 0).Let us denote  by  h  a  mapping of  an  initial  segment of ordinal   numbers, denoted by W(a),in F such that it is 1-1, order preserving  and h(0)=0, h(1)=1, h(s(b))=b+1,where s(b) is the sequent of the b , b<a, the b+1 is in the field operations  the  set  h(W(a))  is  closed   in the  field addition   and multiplication . We shall call field-inherited operations in the ordinal numbers of W(a), the  operations induced by the field, in the initial segment  W(a).

     (For a reference to standard symbolisms and definitions for ordinal  numbers,  see [Cohn P.M. 1965] p.1-36 also [ Kutatowski K.-Mostowski A. 1968]).

The following properties hold for these field-inherited  abelian operations for the ordinals of w(a) ( in that case, it is needless to say that a is a limit ordinal).

     Lemma 1. For the field-inherited abelian  operations  in  the initial segment  w(a) of ordinal numbers, the followings hold (x,y,z,c,x',y', Îw(a)).

     0)   s(x) = x+1                    for every x Î w(a)

     1)   x+y = y+x                     ,    x.y = y.x

     2)   x+(y+z) = (x+y)+z             ,    x.(y.z) = (x.y).z

     3)   x+0 = 0+x = x       ,

          x.0 = 0

          x.1 = 1.x = x

     4)   x(y+z) = xy+xz

     5) 

     6)   If x>y, x'>y' then x+x'>y+y', and xx'+yy'>xy'+yx'

          The proof of the  previous  lemma  is  direct  from  the properties  of a linearly ordered field.

          We  mention  two  more  properties  that  they  will  be of  significance in the followings paragraphs.

     7)  The  w(x+y) is a cofinal set with  the {w(x)+x x+w(y)}and  we write cf(w(x+y)) = cf{w(x)+y   x+w(y)}.

     8) The      W(x.y)     is     cofinal     set     with     the

h-1({h(y)h(w(x))+h(x)h(w(y))-h(w(x)).h(w(y))}) 

          and  we write

     cf(w(x.y)) = cf h-1  ({h(y)h(w(x))+h(x)h(w(y))-h(w(x)).h(w(y))})

     To continue our argument we need  a  many-variables  form  of  transfinite induction.

     Let ai  i = 1,...,n   n  N ordinal numbers and (b1,...bn)   w(ái)x...xw(án).  We  define  as   simultenous initial segment of n-variables defined by (b1,...bn), the set      w((b1,...bn))  =  w(b1)x...x{b1}x...xw(bn)  for   every

     I  {1,...n},or w((b1,...,bn))= w{b1}x...xw{bi)x...x{bn} for

                                                           

     every I {1,...n} with I ¹ Æ.

     Lemma 2. (many-variables transfinite induction)

          Let A w(a1)x...xw(an) such that

     1.   (0,...,0)  A

     2.   For every (b1,...bn)  w(a1)x...xw(an)  it holds that w((b1,...,bn)) A Þ (b1,...,bn)  A.

     By  1.2. we infer that A = w(a1)x...xw(an).

     Lemma  3.   (many-variables   definition   by   transfinite

                   induction)

     Let  a  set   A  and  ordinal  numberss  a1,...,an. Let   a  set denoted by B, such that it is sufficient for inductive rules h B®A :

     This means that :

a)  

     The set  B is a set of  functions, denoted by   and defined on simulteneous initial segments with values in  A. : w((b1,...,bn)) ® A.

    If   B and c1< b1,...,cn< bn then  B

b)  For every  there is a  such that   B

c) Let  and let us  denote the value  of  f at (b1,...,bn) with . Let us suppose that  it holds that whenever c1 £ b1,b'1,...,cn £ bn,b'n,   (b1,...,bn),(b'1,...,b'n)    

w(á1)x...xw(án) then               

Then let us suppose that we get as a consequence that the function defined  by , belongs to B

     It holds that for every function h:B ® A

     (called many -variables transfinite inductive rule ) there is one and only one function f defined on w(a1)x...xw(an) with values in  A such that for every  (b1,...,bn)      w(á1)x...xw(án) it holds  that

Remark:We notice that even for one variable this version of the definition by transfinite induction is somehow different from that which  appears usually in the bibliography (e.g.see [Kutayowski K. –Mostowski A 1968] §4 pp 233 ).It uses not all the set Aw(á) ,but only a subset of it,  sufficient for recursive rules .The proof ,for one variable, is nevertheless exactly the same as with the ordinary version .

     In order to  save  space  and  because  the  proofs  are  not directly relevant  to our subject  we will not give the  proofs of lemma 2  and 3 but we will mention that they are  analogous, without  serious difficulties, to the ones with  one-variable only  (see  e.g. [ Kutayowski K. –Mostowski A 1968],[ Lang S.1984]).

Proposition 4. (Uniqueness)

         Any  two  pairs  of  field-inherited  operations  in  the initial segment  w(a) of ordinals, satisfying properties  7,8 of lemma 1 (a  is a limit ordinal ) are isomorphic .

     Proof: Let a monomorphic embedding denoted by h of w(a), as is described in  the beggining of the paragraph in two linearly ordred fields  denoted by   F1, F2.

     Let the two pairs of field inherited operations in   w(a) be denoted by   ((+,.) () respectively.    They    satisfy the properties 0.1.2.3.4.5.6.7.8.of lemma 1 . Suppose that the  operations +, coincide for    the    set  where . Then  by      property 7 (by the  hypothesis of transfinite induction) =

                                       

      Where by S(A) we denote the sequent of the set A .Thus by lemma 2 the operations +, coincide on  w(a)xw(a).

     Then the set w(a) is an ordered abelian  monoid  relative  to addition, with cancelation law.

     The Grothendieck groups of w(a) for both +, and  coincide, and we denote it  by  k(w(a))  (see  for  the  definition  of Grothendieck group [Lang S. 1984] Ch1 §4 p.  44  or  [Cohn P.M. 1965]  ch  vii  §3 pp 263  ). Thus  also  the opposite -x of an element x  of w(a)  is  the  same  in  the Grothendieck  group  k(w(a))  of w(a)  for  both   the   two  operations + and .

      Suppose also that the operations  coincide  for  the set w ((b1, b2)). Then by property 8

 (because +, and are isomorphic and the   hypothesis   of   transfinite induction  for  . Hence  by  lemma  2 the two operations  coincide on the  whole  set  w(a)xw(a)      Q.E.D.

     The  next  step  is  to  find  the  relation  of field-inherited operations  in  an  initial  segment  of  ordinals  with  the Hessenberg operations .  It  will turn  out  that, if they      satisfy the properties 7.8.of lemma 1 ,then they are nothing else than the Hessenberg-Conway natural  sum  and product (see [Kutatoski K.Mostowski A. 1968 ] ch VII §7 p. 252-253 exercises  1.  2.  3.) and [ Frankel A.A.1953] pp. 591-594 also [Conway J.H. 1976] ch2 p. 27-28).

          The way in which the Hessenberg operations are defined, traditionally , depends  on  the standard non-commutative operation on ordinals.

     In order to define the Hessenberg-Conway operations in the traditional way ,we remind that :

  

 

  Lemma 6 (Cantor normal form).

         For every ordinal  a there  exists  a  natural  number   n and finite sequences :   b1,...,b2 of natural numbers and  ordinal numbers a1,a2,...an with  a1>...>an such  that (For a proof see for instance [Kutatowski K.-Mostowski A. 1968]  ch VII §7 p. 248-251).

     Then we get for the two ordinal numbers   á, b, by adding terms with zero coefficients, to make  their  Cantor normal  forms of   equal   length ,   that      

      we define the natural sum (we denote it by (+)) with      The  natural   product, denoted by á(.)b is defined to  be  the  ordinal  arising  by multiplication (using distributive and associative laws) from the Cantor normal forms of a and b and  by  using  the  rule: ùx(.)ùy =ùx(+)y to multiply powers of ù. As a  result  we  get for instance that

     Remark 7

     1)   The normal form of a can also be written in the standard Hessenberg-Conway operations that is

           

     2)   The sum a(+)b is an increasing function of a and b.

     3)   If and    then for ordinals  æ, ç, á and           conversely if an ordinal j  satisfies the condition: "if î<j and ç<j then î.ç<j" then  there  exists  an  ordinal number á such that ;we call ordinal numbers of  the           type principal   ordinals   of   the   Hessenberg operations.(see [ Kutatowski K.-Mostowski A. 1968] ch vii paragraph 7,p 253) This  has also as  a consequence  that  we define the Hessenberg-Conway           natural operations only for initial segments of the type Wfor  some  ordinal number  á (we  will  call them   principal initial segments ).

     4)   The Hessenberg-Conway natural operation restricted on the set of Natural numbers coincide with  the  ordinary  sum and product of natural numbers.

     5)   The   operation    "powers    of    ù" ,   through    the Hessendberg-Conway natural operation, can be  defined  as follows:

          a)   ù(0) = 1 ù(1) = ù if î is a limit ordinal ù(î) = sup ù(ç)

                                                                                   ç<î

b)   If î is not a limit ordinal then  there  exists  an ordinal  ç  with   ç(+)1= s(ç)=î   and   we   define ù(î) = ùç(.)ù.

               It holds, (this happens especially for the base ù), that these "natural powers" of ù coincide with  the standard powers of ù defined through  the  standard non-commutative multiplication of  ordinal  numbers (this  can be proved with transtinite induction  since  ùç.ù=ù(ç)ù. This gives us the right to express any ordinal number á in Cantor normal form, exclusively  with natural operations:

                 

     6)   Also we notice that, the natural difference   denoted  by a (-) b, of two ordinals a,  b  in  Cantor  normal  forms   

 , is defined only if  p1³q1... pn³qn.

7)      We notice that if îi<îj for two  ordinals  then   but also

for every pair of non-zero  natural numbers a,b. (in the standard non-commutative operations on ordinals). But  this  has  as  consequence  that  the ordering of a finite set of ordinal  numbers  in  Cantor normal form (normalizing  the  Cantor  normal  forms  by adding terms with zero coefficients so that all of  them have the same set of exponents) is isomorphic (similar) to the lexicographical ordering of the  coefficients  of the normal forms.

     Proposition  8.  For every principal initial segment of ordinal numbers, the   Hessenberg natural operations satisfy the properties 0.1.2.3.4.5.6.7.8. of lemma 1.

Remark. From the moment we have  proved the properties 0.1.2.3.4.5.6. for the  natural operations in the  principal initial  segment  w(a), there is the Grothendieck group k(w(a)) of  the  monoid relative to sum, w(a) such that the w(a) is monomorphicaly embedded in k(w(a) (because of cancelation law)  and  also  there  is  an ordering in k(w(a)) that restricted on  w(a)  coincides  with the standard ordering in w(a).

     Then the difference that occurs in property 8 has meaning and also the statement of property  8  itself  has  meaning  (see [Lang S. 1984] Ch I §9 p. 44).We denote by h  the monomorphism  of  the W(a)  in  the  K(W(a))   .

     Proof. The properties 0.1.2.3.4. are  directly  proved  from  the definition of the natural operations.  Let us check  the property 5. Namely , the  cancelation  laws. Let us suppose  that  y,x,c,  are ordinal numbers with y,x,c  for some  ordinal  a and their  Cantor  normal   form ,  in   natural   operations ,  are

                 

           

     pi, ci, y1  No     

     then

                     

             

      hence

               x(+)c=y(+)c Þ pi +ci  = qi +ci          i = 1,...,n      

and by cancelation law for addition  in  natural  numbers  we deduce that pi=qi  i=1,...,n  hence x = y.

     Also

                        and      

                    and if c ¹ 0  

and x(.)c = y(.)c then pi.cj = qi.cj with  not  all  of  cj  equal  to zero.  Say , then  for  every i = 1,...,n hence pi = qi and x=y.

     Let us check the  property 6. The first part  of  property  6  is immediate from Remark 7, 2. Let, furthermore, x',y'   with Cantor normal form (changing the îi, in  order  to  have the same exponents for all x, y, x', y')

                               

     with pi',qi'  No and with  summation  interpreted  as  natural sum. By hypothesis x'>y', x>y.

     Then

                       and          

                     

     and the coefficient of the monomial of greatest  exporent  of x(.)x'(+)y(.)y' is p1p1'+ q1q1' and of x(.)y'(+)y(.)x' is p1q1'+q1p1'. But p1p1' + q1q1' - p1q1' - q1p1' = p1(p1'-q1') - q1(p1'-q1') = (p1-q1). (p1'-q1') > 0 which is  a  product  of  the  positive factors p1-q1, (p1'-q1') hence  it is  positive.  By  Remark  7,7 because p1 q1' + q1 q1'  >  p1 q1'  + q1 p1 we  deduce  that x(.)x'(+)y(.)y'>x(.)y'(+)x'(.)y. Next we prove the property 7. Let x' as before but also satisfying x'w(x)  that  is  x'<x. Then by property 5 we deduce that  w(x)+yw(x+y).  Conversely let z<x+y zw(x+y). Let  the  Cantor  normal  form  of  z  be  (we rearrange appropriately the  normal  forms of x, x', y, y', Z) with riNo. From the last inequality we get that in   the    lexiographical    ordering    it    holds    that (ri,...,rn)<(p1+q1,...,pn+qn)(*)

     Let  and

     Let    and   Then the following ordinals  are defined: z1'(-)z, z1'(-)y, z2'(-)z, z2'(-)y, and also  by  Remark 7,7. It holds that z£z1' z£z2', y£z1' x£z2'. From the  inequality (*) and the inequality (**) qi £ pi + qi i = 1,...,n and  the definition  of  ki   we   infer   that   it   holds   in   the lexicographical ordering, the inequality (k1,...,kn) £ (p1 +q1,...,pn + qn) similarly (ëi,…,ën) £ (p1 + q1,...,pn + qn).  Hence by Remark 7.7. it holds that z1'£x(+)y and z2'£x(+)y  If  for both z1', z2' holds that z1'=x(+)y=z2'.

     Then {ri, qi}={ri, pi}=pi + qi, hence  ri = pi + qi   i=1,...,n.

     But then z=x(+)y ,contradiction.

     Let us suppose then, that z1'<x(+)y.

     Then if z" = z1'(-)y  by  the  last  inequality  we  get  that z"(+)y = z1'(-)y(+)y = z1' < x(+)y or z"(+)y < x(+)y.

     That is we proved that for every  zw(x+y)  there  is  z"  an other ordinal with z£z"(+)y<x+y. If  z"³x  then  z"(+)y³x(+)y contradiction, hence z"<x that is z"w(x)  and z"(+)yw(x)+y. From this and also that w(x)+yÍw(x+y) ,that  we  have  already      proved ,we deduce that w(x+y) and {w(x)+yÈx+w(y)} are  cofinal sets; we  write  cf(w(x+y))=cf({w(x)+yÈx+w(y)})  .  In  other words we haved proved the property 7.

     Let us prove the property 8. As  we  have  already  remarked  the difference is to be understood in the extension of  the  additive monoid w(a) into the linearly ordered  Grothendick  group k(w(a)).    The    ordering    in    k(w(a))    is    defined      by: (x,y)£(x',y')Ûx+y'£x'+y.

     Where by (x,y) we denote the equivalence class  of  the  free abelian  group  generated  by  w(a),  which is denoted  by  Fa,b (w(a)) (k(w(a)) = Fa,b (w(a))/ ([x+y]-[x]-[y])), in the process of taking the quotient by the normal subgroup generated by the elements of the form [x+y]-[x]-[y]  in  Fa,b (w(a))  (the  corresponding generator of xw(a), in Fa,b (w(a) we denote by [x]), that  is defined by the representative  x+(-y).  Needless  to  mention that the natural difference in w(a), isn't but an instance of difference in k(w(a)).

     We  make  clear that  h-1({h(x)(.)h(w(y))(+)h(w(x))(.)h(y) -h(w(x))(.)h(w(y))}={v|vw(á) and v =h-1 (h(x)(.)h(y)'(+)h(x')(.)h(y) - h(x')(.)h(y'))  with  x'w(x) y'w(y) and x,yw(a)}. By the property  6 we get that h(x)(.)h(y')(+)h(x')(.)h(y)  < h(x)(.)h(y)(+)h(x')(.)h(y')   hence

h(x)(.)h(y')(+)h(x')(.)h(y) - h(x')(.)h(y') < h(x)(.)h(y)

hence h-1({h(x)(.)h(w(y))(+)h(w(x))(.)h(y) - h(w(x))(.)h(w(y))}} Í w(x(.)y).

Conversely, let, zw(x(.)y), that is z<x(.)y.

     If x(.)y =   then we  also  write  for the normal form of

z: z =    and rij  No. By  Remark  7,7.  We  deduce  that  in  the lexicographical ordering it holds that (r11,...,rij,...,rn,n   ) <  (p1p1,...,pipj,...,pn.pn). It is sufficient to prove that  for  every (r11,...,rij,...,rn,n) < (p1p1,...,pipj,...,pn.pn) there  are      (p1',...,pn') and (q1',...,qn'),  pi, qj   No  with  (p1',...,pn') <  (p1,...,pn)  and  (q1',...,qn') < (q1,...,qn)   such   that (r11,...,rij,...,rn,n)  £  (p1q1'+p1'q1 - p1'.q1',...,pn.qn'+pn'.qn - pn'.qn') < p1.q1,..., pn.qn).

     But the property 8  holds  for  a=ù,  that  is  for  the  natural numbers. Hence there are p1', q1' with p1' < p1 q1' < q1  and  r11  £ p1 q1'+p1'q1 - p1'.q1' < p1' q1  and completing with arbitrary pi', qi' i = 2,...,n) that give positive the terms pi qj' + pi'qj  -  pi'qj' (by elementary arithmetic of natural numbers this is always possible) we define

x' =  and y' = .

     By the lexicographical ordering it holds that x' w(x), y' w(y) and  h(z)  £  h(x)(.)h(y')(+)h(x')(.)h(y)   -   h(x')(.)h(y') <h(x)(.)h(y). Hence  the  sets W(x(.)y)  and h-1({h(x)(.)h(w(y))  (+) h(w(x))(.)h(y)  - h(w(x))(.)h(w(y))})  are cofinal and we write

     cf(w(x(.)y)) = cfh-1({h(x)(.)h(w(y)) (+) h(w(x))(.)h(y) - h(w(x))(.)h(w(y))}).

     This is the end of the proof of  the property  8.          Q.E.D.

    Corollary 9 (first characterisation )

    Every pair of operations in a  principal  initial  segment  of ordinal that satisfy the properties 0.1.2.3.4.5.6.7.8 of lemma 1 ,.is unique up-to-isomorphism   and    coincides with    the    Hessenberg natural operations .

     Remark:   The   difference     that    appears    in    the property   8   is   defined   as   in   the   remark   after  the proposition 8 .

     Proof:Direct after the proposition 4 and  8            Q.E.D.

.

 

 

Corollary 10.(Second characterisation )

      Every pair of field -inherited operations in a principal initial segment of ordinals, w(a)  that satisfy the properties  7. 8. coincides  with the natural sum and product of Hessenberg .

     ( For the existence of field-inherited operations in the ordinal     numbers see [C Conway J.H.1976 ] ch note pp 28 .)

 Proof: The proof is immediate from  proposition 4 and 8.Q.E.D.

     Remark.11 It seems that N.L.Alling in his publications:

               a)On the existence of real closed Fields that are çá -sets of power ùá Transactions Amer.Math.Soc. 103 (1962) pp 341-352.

              b)Conway's     field     of     surreal     numbers. Trans.Amer.Math.Soc.287 (1985) pp.365-386.

               c)Fountations  of  Analysis  over  Surreal   number Fields  .Math. studies 141 North-Holland 1987.

     he  is  unaweare  that  if  an  initial  segment of  ordinals  is contained in a set-field and it is cofinal with   the   field   ,(and   it   induces    the    Hessenbeg operations   in it) then it has to be an initial segment of a principal ordinal that is  of type (see [Kutatowski K-Mostowski A.1968] ch VII §7 p. 252-253 exercises 1.  2.  3.)

               Thus properties 0.1.2.3.4.5.6.7.8. can be taken as an axiomatic definition of the  Hessenberg  operations  without having to mention the non-commutative ordinal operations.

         In a forthcoming paper, I  will  be  able  to prove      the      non-contradictory      of   properties 0.1.2.3.4.5.6.7.8. (actually the existence in Zermelo-Frankel set theory, of the operations +,.) without  using  the non-commutative  ordinal operations,neither field-inherited operations.  but  through  transfinite  induction  and  other methods of universal algebra .

 

 

                    

 Bibliography

 

[ Bourbaki N. 1952]                              Elemente de Mathematique algebre,  chapitre III Hermann

                                                              Paris 1948, chapitre VI Hermann Paris 1952.

 

[Cohn P.M.1965]                                  Universal  Algebva Harper - Row 1965  .

[Conway J.H.1976]                               On numbers and  games  Academic press 1976 .

[Frankel A.A.1953]                               Abstract  set  Theory.  North  - Holland 1953.

[Gleyzal A. 1937]                                  Transfinite real numbers. Proc. of the Nat. Acad.of scien. 23 (1937) pp 581-587.

[Hessenberg G. 1906]                            Grundbegriffe  der  Mengenlehre (Abh.  der  Friesschen  Schule, N.S. [1]  Heft 4) Gottingen 220 1906).

[Hilbert D. -Ackermann W.1950]    Principles   of    Mathematical Logic.  Chelsea  Pub. Comp. N.Y. 1950.

[Kuratowski K. -MostowskiA.1968 ]   Set  Theory  North  -  Holland 1968.

[Kyritsis C.E.1991 ]                               Ordinal real numbers I.II.III. (unpublished yet )

 [Lang S.1984 ]                                    Algebra .  Addison-Wesley   P.C. 1984 .

[ Laugwitz Detler 1983]                         Ù Calculus as a  Generalization of  Field Extension.  An alternative   approach   to non-Standard  analysis  "Recent developments  in   non-standard analysis" Lecture Notes in Math                                     983   Springer 1983.

[ MacLane  S.1939 ]                             The  Universality  of  Formal Power Series fields.Bull. of the Amer. Math. Soc. 45  (1939) pp 880-890.

 

 

[ Monna A.F.1970 ]                              Analyse non-Archimedienne Springer 1970.

[Neumann B.H.1949 ]                           On ordered division rings. Transact. of the Amer. Math. Soc. 66 (1949) pp 202-252.

[ Robinson A.1974]                               Non-Standard analysis.  North  - Holland 1974 (1966).

[Zakon E. 1955]                                    Fractions  of  ordinal numbers Israel Institute of Tecnology Scient. Public.   6,  94-   103 1955.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   

 

 

 

      List of special symbols

 

     ù                :  Small Greek letter omega,  the  first  infinit number.

     á, b             :  Small Greek letter alfa, an ordinal.

      Ù1              :  Capital   Greek   letter   omega   with    the subscript one.

À(x)                :  Aleph of x, the cardinality of the set X.

                            N: the fisrt  capital  letter  of  the  Hebrew alfabet.

                 :  Natural sum and  product of G. Hessenberg plus and point in   parenthesis.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract

This paper   proves prerequsite results for the theory of Ordinal Real Numbers. In this paper,  is  proved  that  any  field-inherited  abelian operations  and the Hessenberg operations ,in the ordinal numbers coincide.It is given an algebraic characterisation  of the Hessenberg operations ,that can be described as an abelian, well- ordered,double monoid with cancelation laws.

 

 

 

 

 

 Key words

Hessenberg natural operations (in the ordinal numbers)

ordinal numbers

semirings

inductive rules

transfinite induction